Form Approved
OMB NO. 0704-0188

REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 19, 2004 Final progress report, 7/1/2000 — 7/30/2004

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

High order numerical methods for convection dominated problems DAAD19-00-1-0405

6. AUTHOR(S)
Chi-Wang Shu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Division of Applied Mathematics

Brown University

Providence, RI 02812

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211 “4047\0'%"’*
-]

I1. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This project is about the algorithm development, analysis, implementation and application aspects of high order finite difference
weighted essentially non-oscillatory (WENO) schemes, finite volume WENO schemes, discontinuous Galerkin finite element methods
and spectral methods for solving convection dominated problems requiring long time integration and small dissipation/dispersion with
discontinuous or high gradient solutions. Algorithm development and analysis, investigation about efficient implementation including
parallel implementations, and applications in computational fluid dynamics, computational semiconductor device simulation and other
areas, are performed. The achievement strengthens our objective to obtain powerful and reliable high order numerical algorithms and
use them to solve convection dominated problems, especially those of army interest.

14. SUBJECT TERMS

Weighted essentially non-oscillatory schemes, discontinuous Galerkin methods

15. NUMBER OF PAGES
9

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102




Final Report of ARO Grant DAAD19-00-1-0405
High Order Numerical Methods for Convection Dominated Problems

Chi-Wang Shu
Division of Applied Mathematics
Brown University
Providence, RI 02912
E-mail: shu@dam.brown.edu

July 1, 2000 to July 30, 2004

1. Foreword

This project is about the algorithm development, analysis, implementation and
application aspects of high order finite difference weighted essentially non-oscillatory
(WENO) schemes, finite volume WENO schemes, discontinuous Galerkin finite el-
ement methods and spectral methods for solving convection dominated problems
requiring long time integration and small dissipation/dispersion with discontinuous
or high gradient solutions. Algorithm development and analysis, investigation about
efficient implementation including parallel implementations, and applications in com-
putational fluid dynamics, computational semiconductor device simulation and other
areas, are performed. The achievement strengthens our objective to obtain power-
ful and reliable high order numerical algorithms and use them to solve convection
dominated problems, especially those of army interest.

4. Statement of the Problem Studied

The problems studied in this project involve numerical solutions of convection
dominated partial differential equations. These problems typically have solutions
which are either discontinuous, or with discontinuous derivatives, or containing sharp
gradient regions which are difficult to be completely resolved on today’s computers.
Our objective is to develop, analyze and apply numerical methods which “capture”
the discontinuities or sharp gradient regions, without fully resolving them, while main-
taining nonlinearly stable transitions for these discontinuities or sharp gradients and
high order accuracy in the smooth part of the domain. High order accurate finite
difference and finite volume WENO schemes, finite element discontinuous Galerkin
methods, and spectral methods have all been considered.

Our approach is to explore the robustness and efficiency of high order numerical al-
gorithms for nonsmooth problems both through theoretical guidance, often obtained



with rigorous proofs on simplified model problems, and through numerical experi-
ments on real application problems. We do not try to modify algorithms just for the
purpose of convergence proofs, if such modifications are not justified by numerical
experiments. For finite difference schemes, we are exploring the very efficient WENO
schemes based on point values, numerical fluxes, and nonlinearly stable high order
Runge-Kutta time discretizations. For finite element methods, we are exploring the
Runge-Kutta discontinuous Galerkin methods of Cockburn and Shu, which combine
the advantage of finite elements (weak formulation, automatic energy stability, easy
handling of complicated geometry and boundary conditions) with features of high
resolution finite difference schemes (approximate Riemann solvers, limiters). Effec-
tive ways to handle viscous terms and higher derivative terms are being investigated.
For spectral methods, we are exploring reconstruction techniques of Gottlieb and Shu
to apply spectral approximations to discontinuous functions and still obtain uniform
spectral accuracy.

We have been continuing on the study of efficient and high order finite difference
WENO schemes on multiple domains with overlaps, which will be useful for general
problems of overlaying domains and is of interest to Dr. Rupak Biswas of RIACS
and Dr. Roger Strawn of US Army AFDD, at NASA Ames Research Center, on
the investigation of developing high order high resolution numerical methods for the
simulation of helicopter rotor blade motion.

5. Summary of the Most Important Results

Research has been performed in all areas listed in the original proposal, and
progress and results consistent with the original objectives have been obtained. There
are 54 publications (among them 32 appeared in refereed journals, 6 appeared in con-
ference proceedings and book chapters, 9 accepted and to appear in refereed journals,
and 7 preprints submitted for publications) resulting from this project, see Section 6
for a list of them.

S. Gottlieb, C.-W. Shu and E. Tadmor have reviewed and further developed a
class of strong stability preserving (SSP) high order time discretizations for semi-
discrete method of lines approximations of partial differential equations, [al] (all
the numbering of references are according to that of Section 6). Termed TVD (total
variation diminishing) time discretizations before, these high order time discretization
methods preserve the strong stability properties of first order Euler time stepping and
has proved very useful especially in solving hyperbolic partial differential equations.
The new developments include the construction of optimal explicit SSP linear Runge-
Kutta methods, their application to the strong stability of coercive approximations,
a systematic study of explicit SSP multi-step methods for nonlinear problems, and
the study of the strong stability preserving property of implicit Runge-Kutta and
multi-step methods. A survey of the SSP time discretizations is also given in [b1].



Discontinuous Galerkin (DG) method has been extensively developed, analyzed
and applied during this period. In [a4], Cockburn and Shu have given an exten-
sive review of the state of the art of this method. In [a6,a7,a30,a31] and [d12,d14],
Yan and Shu, Levy, Shu and Yan, and Xu and Shu developed and analyzed non-
linearly stable local discontinuous Galerkin (LDG) methods for partial differential
equations containing third and higher spatial derivatives, including the KdV equa-
tions, time dependent bi-harmonic equations, K(m,n) equations with compacton
solutions, KdV-Burgers type equations, the general fifth-order KdV type equations
and the fully nonlinear K(n,n,n) equations, the Kuramoto-Sivashinsky equations
and the Ito-type coupled KdV equations, one and two dimensional generalized non-
linear Schrodinger equation and the coupled nonlinear Schrodinger equation, and the
two dimensional Kadomtsev-Petviashvili equation and Zakharov-Kuznetsov equation.
These LDG methods satisfy cell entropy inequalities and are nonlinearly stable in L?
or other norms for quite general nonlinear cases, and are flexible in h-p adaptivity and
efficient for parallel implementation. In [a12,a25] and [d5], Cockburn, Luskin, Shu
and Suli, Ryan and Shu, and Ryan, Shu and Atkins have explored the higher order
convergence rates in negative norms for discontinuous Galerkin methods applied to
linear hyperbolic problems, and an efficient, local post-processing technique which
can recover (2k+1)-th order of accuracy, instead of the usual (k+1)-th order, in L?
norm, for DG solutions to linear hyperbolic problems including those with variable
and discontinuous coefficients. This technique can also recover derivatives of the nu-
merical solution with enhanced order of accuracy. Such methods are expected to be
extremely useful for adaptive computations and this will be explored in the future.
In [a18,d2], Zhang and Shu explored a method to analyze the convergence and rate
of convergence for discontinuous Galerkin methods and related spectral finite volume
method (which is a Petrov-Galerkin method), and used it to analyze three different
formulations of the discontinuous Galerkin method for solving diffusion problems, as
well as to compare discontinuous Galerkin method with the spectral finite volume
method. In [a23] and [d6,d7], Qiu and Shu developed a new approach using weighted
essentially non-oscillatory (WENO) reconstructions as limiters for the discontinuous
Galerkin methods solving hyperbolic problems containing strong discontinuities, thus
allowing the method to be both high order accurate and non-oscillatory for strong
discontinuities. A Hermite WENO reconstruction procedure, which relies on a more
compact stencil in the reconstruction to achieve high order accuracy, is also developed.
In [a28], [b6] and [d1], Cockburn, Li and Shu, and Li and Shu developed the locally
divergence-free discontinuous Galerkin method for solving the Maxwell equations and
the MHD equations. In [a29], Zhang and Shu have given an error estimate for the
fully discrete Runge-Kutta discontinuous Galerkin method applied to nonlinear scalar
hyperbolic conservation laws with smooth solutions. In [d16], a heterogeneous multi-
scale method based on the discontinuous Galerkin method is developed by Chen,
E and Shu. This paper demonstrates the good potential of discontinuous Galerlin
method in multiscale calculations.



WENO (weighted essentially non-oscillatory) finite difference and finite volume
methods have been extensively developed and applied during this period. In [a3],
these methods are compared with the discontinuous Galerkin method and a guideline
is given as to when each method has its unique advantage. In [a5], a technique is
introduced to treat the appearance of negative linear weights in WENO reconstruc-
tions while maintaining the stability of the approach. In [a8,a15,a24] and [b2], WENO
methods are developed to solve models in semiconductor device simulations, including
the direct numerical simulation via the Boltzmann-Poisson equations, which is very
difficult because of the high dimensions (a two dimensional simulation would involve
2 space dimensions, 3 phase dimensions plus time, i.e. 541 dimensions). In [al0],
high order central WENO schemes are developed and analyzed. A comprehensive
survey of WENO schemes and DG methods is given in [all]. In [al4], a high order
WENO method is developed for solving the Hamilton-Jacobi equations on arbitrary
triangulations. In [al7], a multi-domain finite difference WENO method, which can
be used on quite general geometry and yet is much less expensive than finite volume
WENO method, is developed and applied to computational fluid dynamics problems.
In [a19,a22] and [b5], the resolution properties of high order WENO schemes when
used on problems with both shocks and complicates smooth structures are explored,
and it is concluded that higher order WENO schemes still have advantages in obtain-
ing a comparable resolution with smaller CPU cost. In [a20], a Lax-Wendroff type
time discretization procedure is developed for finite difference WENO schemes, which
could be more efficient than the traditional Runge-Kutta time discretization under
certain circumstances. In [a21], a WENO solver is developed for a multi-class MWR
traffic model. In [a26], a WENO scheme is developed for a particle-fluid two phase
problem. In [a32], a WENO scheme is developed for cosmological hydrodynamic prob-
lem in astrophysics. In [d11,d15], well balanced, high order finite difference WENO
schemes are developed which can maintain exactly certain steady state solutions and
at the same time are genuinely high order accurate for general solutions of the shallow
water equations and the hyperbolic model of chemosensitive movements.

In spectral methods, Carpenter, Gottlieb and Shu [al3] proved conservation and
convergence of a class of global schemes including the spectral methods and compact
methods.
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